946 research outputs found

    Polyactide bioresorbable scaffolds: from inception to long-term-follow-up of first in man studies

    Get PDF

    Polyactide bioresorbable scaffolds: from inception to long-term-follow-up of first in man studies

    Get PDF

    SYNTAX II and SYNTAX III trials: What is the take home message for surgeons?

    Get PDF
    Percutaneous coronary intervention (PCI) has evolved greatly in the last 40 years since its introduction by Andreas Grüntzig in 1977. Since then, we've observed an evolution in balloons, the development of stents, changes in stent structure, development of drug eluting stents, improvements in strut design, thickness and even their polymeric coating. Most recently we saw the rise and "fall" of bioabsorbable scaffolds for PCI. Trials with the most diverse devices for PCI and diagnostic techniques have been conducted. Two of the most recent trials were reported in the last year and deserve special attention-SYNTAX II and SYNTAX III. These trials are completely different in design but present valuable information for doctors managing coronary artery disease (CAD). Both trials take into account contemporary technology for assessing and treating CAD. The first uses so-called "state-of-the-art" PCI and compares the outcomes of that approach with the outcomes of the PCI arm of the pivotal SYNTAX trial. SYNTAX III Revolution on the other hand does not focus on clinical endpoints: it is a blinded trial that does not randomize patients but randomizes doctors ("the heart team") to make a decision on the best treatment for complex CAD. This decision was based either on multi-slice CT with physiological assessment using FFRCT or on conventional angiography. In this review we bring the most important aspects of those trials and the key messages for surgeons together; also, what the surgeon may expect in the future after the publication of these interesting concepts

    Multimodality Imaging to Detect Vulnerable Plaque in Coronary Arteries and Its Clinical Application

    Get PDF
    Postmortem studies have described the association between the thin-cap fibroatheroma (TCFA) and the occurrence of acute coronary syndrome (ACS). Both noninvasive and invasive techniques have been refined and used as a research tool to visualize the plaque at a high risk of disruption. There has been a considerable effort to develop the imaging modalities that offer detailed visualization of coronary pathology and accurately predict the adverse cardiac outcomes. This chapter provides an overview of the current and experimental coronary imaging methods to detect vulnerable plaque and discuss the potential implication of multimodality imaging in clinical practice

    Hierarchies of conditional beliefs and interactive epistemology in dynamic games

    Get PDF
    Digitised version produced by the EUI Library and made available online in 2020

    Implications of a bioresorbable vascular scaffold implantation on vessel wall strain of the treated and the adjacent segments

    Get PDF
    Background Metallic stents change permanently the mechanical properties of the vessel wall. However little is known about the implications of bioresorbable vascular scaffolds (BVS) on the vessel wall strain. Methods Patients (n = 53) implanted with an Absorb BVS that had palpographic evaluation at any time point [before device implantation, immediate after treatment, at short-term (6-12 months) or mid-term follow-up (24-36 months)] were included in the current analysis. The palpographic data were used to estimate the mean of the maximum strain values and the obtained measurements were classified using the Rotterdam classification (ROC) score and expressed as ROC/mm. Results Scaffold implantation led to a significant decrease of the vessel wall strain in the treated segment [0.35 (0.20, 0.38) vs. 0.19 (0.09, 0.29); P = 0.005] but it did not affect the proximal and distal edge. In patients who had serial palpographic examination the vessel wall strain continued to decrease in the scaffolded segment at short-term [0.20 (0.12, 0.29) vs. 0.14 (0.08, 0.20); P = 0.048] and mid-term follow-up [0.20 (0.12, 0.29) vs. 0.15 (0.10, 0.19), P = 0.024]. No changes were noted with time in the mechanical properties of the vessel wall at the proximal and distal edge. Conclusions Absorb BVS implantation results in a permanent alteration of the mechanical properties of the vessel wall in the treated segment. Long term follow-up data are needed in order to examine the clinical implications of these findings
    corecore